
QCDNUM Nikhef-10-002

arXiv:1005.1481

A Portable Collection of Fortran Utility Routines

MBUTIL version 5.0

M. Botje∗

Nikhef, Science Park 105, 1098XG Amsterdam, the Netherlands

January 27, 2016

Abstract

The mbutil library is a well documented collection of fortran routines. Some
of these are taken from the public libraries cernlib and netlib while others are
privately developed for use in the QCD evolution program qcdnum. The aim
of this collection is to make qcdnum independent of the availability of external
libraries, and also to give easy access to a large set of general-purpose qcdnum
routines. Of particular interest are routines that partition a linear store into
multidimensional arrays—these are the basis of the simple but effective and fast
qcdnum dynamic memory management—and routines for fast interpolation. Also
included is a string formatter that can be used to process free-format datacards.

∗email m.botje@nikhef.nl

Contents

1 Introduction 3

2 Utility Routines 3

3 Triangular and Diagonal Band Equations 6

4 Pointer Arithmetic in a Linear Store 9

5 Fast Interpolation 11

6 Bitwise Operations 13

7 Character String Manipulations 15

8 String Formatter 17

Index 22

2

1 Introduction

The mbutil package is an integral part of the qcdnum distribution1 and contains a pool
of fortran utility routines. Some of these are developed privately, some are taken from
cernlib and some are picked-up from public source code repositories such as netlib2.

The routines in mbutil are grouped into general purpose utilities (Section 2), fast
solution of triangular and band systems (Section 3), pointer arithmetic in a linear store
(Section 4), fast interpolation (Section 5), bitwise operations (Section 6) character string
manipulations (Section 7) and a string formatter (Section 8).

It is worthwhile to have a look at Section 4 where routines are described that dynamically
partition a linear store into multi-dimensional arrays, and allow you to achieve fast
indexing in these arrays. Indeed, qcdnum owes much of its flexibility and speed to
these routines. Of interest may also be Section 5 (fast interpolation) and Section 8
where it is described how to use a string formatter to process free-format datacards.

The syntax of the mbutil calls is as follows

xMB_name (arguments)

where x = S for subroutines and x = L, I, R or D for logical, integer, real and double-
precision functions, respectively. The functions must be explicitly typed in the calling
routine unless this is taken care of by an implicit type declaration, thus:

logical lval, lmb_function

lval = LMB_FUNCTION (arguments)

Unless otherwise stated all floating point calculations are done in double precision. This
implies that actual floating point arguments should be given in double precision format:

dval = dmb_gamma (3.D0) ! ok

dval = dmb_gamma (3.0) ! wrong!

2 Utility Routines

In this section we describe the mbutil utility programs given in Table 1.

dval = DMB GAMMA (x)

Calculate the gamma function

Γ(x) =
∫ ∞
0

e−t t x−1 dt (x > 0).

The function dmb gamma as well as x and dval should be declared double precision

in the calling routine. Code taken from cernlib C302 (dgamma).

1http://www.nikhef.nl/user/h24/qcdnum
2http://www.netlib.org

3

Table 1: Utility routines in mbutil. Output variables are marked by an asterisk (*) and in-out
variables by an exclamation mark (!). Cernlib routines are identified in the first column.

cernlib Subroutine or function Description
C302 DMB GAMMA (x) Gamma function
C332 DMB DILOG (x) Dilogarithm
D401 SMB DERIV (f, x, !del, *dfdx, *derr) Differentiation
D103 DMB GAUSS (f, a, b, e) Gauss integration
F010 SMB DMINV (n, !a, m, ir, *ierr) Matrix inversion
F010 SMB DMEQN (n, a, m, ir, *ierr, k, b) Linear equations
F012 SMB DSINV (n, !a, m, *ierr) Invert symmetric matrix
M103 SMB RSORT (!rarr, n) Sort real array

SMB ASORT (!rarr, n, *m) Sort and weed real array
RMB URAND (!iy) Uniform random numbers

dval = DMB DILOG (x)

Calculate the dilogarithm

Li2(x) = −
∫ x

0

ln |1− t|
t

dt.

The function dmb dilog as well as x and dval should be declared double precision

in the calling routine. Code taken from cernlib C332 (ddilog).

call SMB DERIV (fun, x, !del, *dfdx, *erel)

Calculate the first derivative f ′(x). The derivative of f should exist at and in the
neighborhood of x. This is the responsibility of the user: output will be misleading if
the function f is not well behaved. Code taken from cernlib D401 (dderiv).

fun User supplied double precision function of one argument (x). Should be declared
external in the calling routine.

x Value of x where the derivative is calculated.

del Scaling factor. Can be set to 1 on input and contains the last value of this factor
on output (see the cernlib write-up).

dfdx Estimate of f ′ on exit. Set to zero if the routine fails.

erel Estimate of the relative error on f ′. Set to one if the routine fails.

dval = DMB GAUSS (fun, a, b, epsi)

Calculate by Gauss quadrature the integral

I =
∫ b

a
f(x) dx.

In the calling routine the function dmb gauss, all its arguments and dval should be
declared double precision. Code taken from cernlib D103 (dgauss).

4

fun User supplied double precision function of one argument (x). Should be declared
external in the calling routine.

a,b Integration limits.

epsi Required accuracy of the numerical integration.

call SMB DMINV (n, arr, idim, ir, *ierr)

Calculate the inverse of an n× n matrix A. Code taken from cernlib F010 (dinv).

n Dimension of the square matrix to be inverted.

arr Array, declared in the calling routine as double precision arr(idim,jdim)

with both idim ≥ n and jdim ≥ n. On entry the first n × n elements of arr

should contain the matrix A. On exit these elements will correspond to A−1,
provided that A is not found to be singular (as signalled by the flag ierr).

idim First dimension of arr.

ir Integer array of at least n elements (working space).

ierr Set to −1 if A is found to be singular, to 0 otherwise.

call SMB DMEQN (n, arr, idim, ir, *ierr, k, b)

Solve the matrix equation Ax = b with multiple right-hand sides. Code taken from
cernlib F010 (deqn).

n Dimension of the square matrix A.

arr Array, declared in the calling routine as double precision arr(idim,jdim)

with both idim ≥ n and jdim ≥ n. On entry the first n × n elements of arr

should contain the matrix A. On exit, A is destroyed.

idim First dimension of arr.

ir Integer array of at least n elements (working space).

ierr Set to −1 if A is found to be singular, to 0 otherwise.

k Second dimension of array b.

b Array, dimensioned b(idim,k) that contains on entry a set of k right-hand side
vectors of dimension n, and on exit the set of k solution vectors x.

call SMB DSINV (n, arr, idim, *ierr)

Calculate the inverse of an n×n symmetric positive definite matrix A (i.e. a covariance
matrix). Code taken from cernlib F012 (dsinv).

n Dimension of the square matrix to be inverted.

arr Array, declared in the calling routine as double precision arr(idim,jdim)

with both idim ≥ n and jdim ≥ n. On entry the first n × n elements of arr

should contain the matrix A. On exit these elements will correspond to A−1,
provided that A is found to be positive definite (as signalled by the flag ierr).

idim First dimension of arr.

ierr Set to 0 if A is found to be positive definite, to −1 otherwise.

5

call SMB RSORT (!rarr, n)

Sort the first n elements of the real array rarr in ascending order onto itself. On exit
we thus have

A1 ≤ A2 ≤ · · · ≤ An−1 ≤ An.

Note that rarr should be declared real and not double precision in the calling
routine. Code taken from cernlib M103 (flpsor).

call SMB ASORT (!rarr, n, *m)

Sort the first n elements of the real array rarr in ascending order onto itself but discard
equal terms. On exit rarr contains a list of m ≤ n terms such that

A1 < A2 < · · · < Am−1 < Am.

The remaining n−m elements are undefined. Notice that rarr should be declared real

and not double precision in the calling routine.

rval = RMB URAND (!iy)

Return a (real) uniform random number in the interval (0, 1). The integer iy should
be initialized to an arbitrary value before the first call to rmb urand but should not be
altered by the calling routine in between subsequent calls. Note that rmb urand must
be declared real in the calling routine. Code taken from netlib.

3 Triangular and Diagonal Band Equations

In qcdnum there are lower triangular and lower diagonal band systems to be solved.
For reasons of efficient storage and speed, we provide a set of routines optimized for
lower and upper systems in different storage schemes.

In what follows we will use the characters U and L to denote upper and lower triangular
or band matrices. A second index labels the storage scheme: (M) fortran matrix; (L)
linear storage; (T) packed triangular storage and (B) band storage. Thus, the following
routine solves a lower diagonal system (L) in the fortran matrix storage scheme (M).

call SMB LMEQS (A, na, m, *x, b, n, *ierr)

Solve, by forward substitution, the lower diagonal band system Ax = b of dimension n
and bandwidth m. When n = m, the system is lower triangular.

A 2-dim square array declared in the calling routine as double precision A(na,na).
The n× n sub-matrix of A should be filled with the lower triangular or lower di-
agonal band matrix.

6

na Dimension of A as declared in the calling routine.

m Bandwidth ≤ n. To be set to n if the matrix is triangular.

x Contains the solution vector x on exit. Should be dimensioned to at least n in
the calling routine.

b Right-hand side vector b. Should be dimensioned to at least n in the calling
routine.

n Dimension of the triangular system to be solved.

ierr Set to a non-zero value if A is singular. The output vector x is then undefined.

An upper triangular or upper diagonal band system is solved by

call SMB_UMEQS (A, na, m, *x, b, n, *ierr).

For these routines the matrix A is stored in a 2-dimensional fortran array such as

Aij =

A11

A21 A22

A31 A32 A33

A41 A42 A43 A44

 or Aij =

A11 A12

A22 A23

A33 A34

A44

 .

In this scheme n× n words of storage are used but only n(n + 1)/2 words are occupied
by a triangular matrix and even less by a band matrix. For better use of memory and
CPU we provide a set of routines which employ more efficient storage schemes and fast
addressing. As already mentioned above, these additional storage schemes are labeled
by: (L) linear storage; (T) packed triangular and (B) band storage.

Linear storage: The address k(i, j) in a linear store (column-wise storage) is given by

k(i, j) = i + (j − 1)n Aij =

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

 .

This storage model takes as much space as a normal fortran array (n× n words) but
the address arithmetic in the substitution loops is faster (factor of two, roughly).

Triangular storage: The storage model for lower triangular matrices is

k(i, j) = i(i− 1)/2 + j (i ≥ j) ALT
ij =

1
2 3
4 5 6
7 8 9 10

and for upper triangular matrices

k(i, j) = (n + 1− i)(n− i)/2 + n + 1− j (i ≤ j) AUT
ij =

10 9 8 7

6 5 4
3 2

1

 .

7

Note that the address k is not linear in i but linear in j allowing for fast indexing in
the forward or backward substitution loop. These storage schemes occupy n(n + 1)/2
words and are fully efficient for triangular but not for band matrices.

Band storage: Storage of band matrices in n×m words is achieved by

k(i, j) = (i− j)n + i (i ≥ j) ALB
ij =

1
6 2

7 3
8 4

k(i, j) = (j − i)n + j (i ≤ j) AUB
ij =

1 6

2 7
3 8

4

 .

These schemes are not fully efficient since m(m − 1)/2 words are wasted but they are
better than the triangular schemes when nm < n(n+1)/2, that is, when the bandwidth
m < (n+ 1)/2. Note that, again, the indexing is linear in j allowing for fast addressing
in the substitution loop.

In the table below we list the routines to solve the triangular or banded equations
and the corresponding functions to address the elements of the associated matrix. The

Table 2: Routines to solve triangular systems.

Equation Solver Address Arithmetic Size of A Scheme
SMB LLEQS(A,m,x,b,n,ierr) IMB LLADR(i,j,m,n) n× n Linear
SMB ULEQS(A,m,x,b,n,ierr) IMB ULADR(i,j,m,n)

SMB LTEQS(A,m,x,b,n,ierr) IMB LTADR(i,j,m,n) n(n + 1)/2 Triangular
SMB UTEQS(A,m,x,b,n,ierr) IMB UTADR(i,j,m,n)

SMB LBEQS(A,m,x,b,n,ierr) IMB LBADR(i,j,m,n) n×m Band
SMB UBEQS(A,m,x,b,n,ierr) IMB UBADR(i,j,m,n)

arguments of these routines are as follows: A is a one-dimensional array containing the
input matrix (the required size of A is given in Table 2); m (≤ n) is the bandwidth of
the system; x is the output solution vector; b is the input right-hand side vector and
n is the dimension of the system to be solved. The error flag ierr is set to a non-zero
value if A is singular in which case x is undefined.

Because the structure of the matrix is completely specified by the dimension n and the
bandwidth m and because these two parameters are passed to the address functions it is
possible to do array boundary checks in these functions: an address of zero is returned
when (i, j) does not correspond to an element of the triangular or band matrix. The
array boundary check is illustrated in the following example:

parameter (n=5, m=2)

dimension s(n,n), a(n*m), x(n), b(n)

8

C-- Pack lower band matrix

do i = 1,100 ! We can loop over as many i,j

do j = -50,50 ! as we like. It does not matter

k = imb_LBadr(i,j,m,n) ! because k = 0 when (i,j) is not

if(k.ne.0) a(k) = s(i,j) ! an element of the band matrix ...

enddo

enddo

C-- Solve lower diagonal band system

call smb_LBeqs(a,m,x,b,n,ierr)

4 Pointer Arithmetic in a Linear Store

In this section we describe a pointer arithmetic which maps multi-dimensional arrays
onto linear storage so that it is possible to declare one large linear store at compilation
time and dynamically partition it at run time. This simple method of dynamic mem-
ory management already provides many advantages compared to using fixed fortran
arrays.

To make clear how it works let us declare a 3-dimensional fortran array

dimension A (i1min:i1plus, i2min:i2plus, i3min:i3plus)

The number of words occupied by A is given by nA = n1n2n3 with nk = i+k − i−k + 1.
Instead of declaring A, we now partition a linear storage B which itself is declared as

dimension B (m1:m2)

with m2 ≥ m1 + nA − 1 if B is to hold the data stored in A. It is easy to construct
a linear pointer function P (i1, i2, i3) which assigns a unique address m to any possible
combination of the indices:

m = P (i1, i2, i3) = C0 + C1 i1 + C2 i2 + C3 i3. (1)

The coefficients Ck are unique functions of i±1 , i±2 , i±3 and m1, provided that a convention
of ‘row-wise’ or ‘column-wise’ storage is adopted. We take in mbutil the fortran
column-wise convention where the first index ‘runs fastest’, that is:

P (i1 + 1, i2, i3) ≡ P (i1, i2, i3) + 1.

In the following we describe the routine smb bkmat which defines the partition of the
linear store (much like a fortran dimension statement) and the function imb index

which calculates an address in this linear store.

call SMB BKMAT (imin, imax, *karr, n, im1, *im2)

Define a partition of a linear store B such that it maps onto a multi-dimensional array
A(i1, . . . , in) with n indices. The definition range of each index is i−k ≤ ik ≤ i+k .

9

imin Input integer array containing the lower index limits i−k . Should be dimensioned
to n in the calling routine.

imax As above, but now containing the upper limits i+k .

karr Integer array containing, on exit, the coefficients Ck used to calculate the address
in the linear storage. Should be dimensioned to karr(0:n) in the calling routine.

n Dimension of the partition.

im1 Address in B where the first word of A should be stored.

im2 Gives, on exit, the address in B where the last word of A will be stored. B should
thus be dimensioned to at least B(im1:im2).

Note that once a partition is defined there is nothing against booking another one
starting at im2+1 provided that the store B is large enough.

iaddr = IMB INDEX (iarr, karr, n)

Calculate an address in the linear store.3

iarr Input integer array containing the values (i1, . . . , in) of the indices.

karr Input integer array containing the coefficients Ck to calculate the address in the
linear store. This array should have been filled beforehand by a defining call to
smb bkmat.

n Dimension of the partition.

Note that this function does not perform array boundary checks so that it is your
responsibility to make sure that all indices stored in iarr are within their respective
ranges. Note also that smb bkmat and imb index do not operate on the store B but
merely calculate an address in B.

The address arithmetic as given in (1) provides the possibility to do fast addressing in
nested loops. To see this, take for example a 3-dimensional array A(100,100,100) and
map it onto a linear store B(1000000). Now consider the loop:

do i1 = 1,100

do i2 = 1,100

do i3 = 1,100

A123 = B(P(i1,i2,i3))

..

where P(i,j,k) is a wrapper4 for imb index that returns the address in B. The address
calculation in the inner loop costs 3×106 additions and 3×106 multiplications. However,
from (1) it follows that increasing or decreasing an index ik by one unit does correspond
to a unique fixed increment of the address in B. Fast addressing can then be achieved
by maintaining running sums of these increments, as is illustrated below:

3After the call to smb bkmat you could also calculate the address yourself through, for 3 indices,

iaddr = P(i,j,k) = karr(0) + karr(1)*i + karr(2)*j + karr(3)*k

4The sole reason to introduce here this wrapper is to make the code examples below easier to read.

10

inc1 = P(2,1,1)-P(1,1,1) !Address increment of i1

inc2 = P(1,2,1)-P(1,1,1) !Address increment of i2

inc3 = P(1,1,2)-P(1,1,1) !Address increment of i3

m1 = P(1,1,1)-inc1 !Base address

do i1 = 1,100

m1 = m1 + inc1

m2 = m1 - inc2

do i2 = 1,100

m2 = m2 + inc2

m3 = m2 - inc3

do i3 = 1,100

m3 = m3 + inc3

A123 = B(m3) !A(i1,i2,i3)

..

There are now only slightly more than 106 additions (no multiplications) to calculate
the addresses. Note that the addressing scheme given above works for any nesting order
of the loops. When the nesting is in the same order as the indices, with the first index
running in the inner loop, then one walks sequentially through the store so that the
code simplifies to:

ia = P(1,1,1)-1 !Base address

do i3 = 1,100

do i2 = 1,100

do i1 = 1,100

ia = ia + 1

A123 = B(ia) !A(i1,i2,i3)

..

Here is code with very fast addressing that initializes the array

ia = P(1, 1, 1) !First address

ib = P(100,100,100) !Last address

do i = ia,ib

B(i) = value

enddo

5 Fast Interpolation

Piecewise polynomial interpolation of order n on tabulated data consists of selecting
an n-point sub-grid around the interpolation point, followed by an interpolation of the
data on that sub-grid. This interpolation can be written as a (nested) weighted sum
with weights that do not depend on the data. Pre-calculating the weights for a set of
interpolation points thus allows for fast interpolation of more than one table.

We will restrict ourselves here, as in qcdnum, to the orders n = 1 (point value), 2
(linear interpolation) and 3 (quadratic interpolation). The interpolation sub-grids of

11

x1

f1

n = 1

x1 x2

f1

f2

n = 2

x1 x2 x3

f1

f2
f3

n = 3

Figure 1: Interpolation function for sub-grids of size n = 1, 2 and 3.

size n = (1, 2, 3) are shown in Figure 1. For these sub-grids, the algorithm reads

n = 1 f(x) = w1(x) f1 w1(x) = 1

n = 2 f(x) = w1(x) f1 + w2(x) f2 w1(x) = (x− x1)/(x2 − x1) w2 = 1− w1

n = 3 g(x) = w1(x) f1 + w2(x) f2 w1(x) = (x− x1)/(x2 − x1) w2 = 1− w1

h(x) = w3(x) f2 + w4(x) f3 w3(x) = (x− x2)/(x3 − x2) w4 = 1− w3

f(x) = w5(x) g + w6(x)h w5(x) = (x− x1)/(x3 − x1) w6 = 1− w5.

It is seen that the interpolation is, for a given interpolation point x, a (nested) weighted
sum of the function values fi, with (1, 2, 6) different weights for interpolation at order
n = (1, 2, 3). The weights depend on n, x and the grid points xi, but not on f .

We extend the algorithm to an nx × ny 2-dimensional interpolation mesh simply by
performing ny interpolations in x and one interpolation in y.

When we have to interpolate more than one table it clearly makes sense to first cal-
culate the weights and then interpolate each table. For this we provide the routine
smb polwgt to pre-compute the weights which can then be fed into the interpolation
functions dmb polin1 and dmb polin2 for 1- or 2-dimensional interpolation, respectively.

call SMB POLWGT (x, xi, n, *w)

Compute the weights for interpolation on a 1, 2, 3-point interpolation grid.

x Interpolation point (irrelevant when n = 1). Should be inside the range of the
interpolation grid to avoid extrapolation and the corresponding loss of accuracy.

xi Input array, dimensioned to at least n in the calling routine, filled with the n

interpolation grid points xi (see Figure 1).

n Number of points in the interpolation grid [1–3].

w Output weight array, dimensioned to at least (1,2,6) for n = (1,2,3).

12

val = DMB POLIN1 (w, fi, n)

One-dimensional interpolation on a 1, 2, 3-point interpolation grid.

w Input weight array filled by an upstream call to smb polwgt.

fi Input array, dimensioned to at least n in the calling routine, filled with n function
values fi (see Figure 1).

n Interpolation order [1–3] as set in the upstream call to dmb polwgt.

val = DMB POLIN2 (wx, nx, wy, ny, fij, m)

Two-dimensional interpolation on an nx × ny interpolation mesh.

wx Input weight array filled by an upstream call to smb polwgt.

nx Interpolation order in x [1–3] as set in the upstream call to smb polwgt.

wy, ny As above, but now for the interpolation in y.

fij Input array, dimensioned to at least fij(nx,ny) in the calling routine, filled
with the function values fij to be interpolated.

m First dimension of fij as declared in the calling routine.

In the example below we interpolate three functions on a 3× 2 interpolation mesh.

dimension xi(3), wx(6), yi(2), wy(2), fij(3,2), gij(3,2), hij(3,2)

..

fill the arrays xi, yi and fij, gij, hij (code not shown)

..

call smb_polwgt(x, xi, 3, wx) ! weights in x

call smb_polwgt(y, yi, 2, wy) ! weights in y

f = dmb_polin2(wx, 3, wy, 2, fij, 3) ! f(x,y)

g = dmb_polin2(wx, 3, wy, 2, gij, 3) ! g(x,y)

h = dmb_polin2(wx, 3, wy, 2, hij, 3) ! h(x,y)

6 Bitwise Operations

In this section we describe a few routines and functions to manipulate bits in 32-bit
integers. The bit numbering runs from 1 (least significant bit) to 32 (most significant
bit). The routines presented below rely on the following machine representation of the
integer value +1 which, as far as we know, is standard on all platforms:

bit 32 bit 1

| |

00000000000000000000000000000001

Please notice that the bitwise operations will not work for 16-bit integers.

13

call SMB SBIT1 (i, n)

Set bit n of integer i to 1.

call SMB SBIT0 (i, n)

Set bit n of integer i to 0.

ival = IMB GBITN (i, n)

Give the value (0 or 1) of bit n of integer i.

ival = IMB SBITS (cpatt)

Store a bit pattern in an integer i. The bit pattern is given in the input string cpatt

containing a sequence of 32 characters ‘1’ and ‘0’.

Here is an example which sets the value of i to 7:

character*32 cpatt

data cpatt /’00000000000000000000000000000111’/

i = imb_sbits (cpatt) ! i = 7

call SMB GBITS (i, *cpatt)

Store the bit pattern of an integer i in a character string. The output string cpatt

should be declared character*32 in the calling routine.

ierr = IMB TEST0 (mask, i)

Verify that a selected set of bits in i are all set to zero.

mask Input 32-bit integer. If bit n of mask is set to 1 then the corresponding bit of i
will be checked. Otherwise bit n will not be checked.

i Input 32-bit integer variable to be checked.

ierr Non-zero if the test fails. Thus ierr = 0 means that all checked bits in i are 0.

ierr = IMB TEST1 (mask, i)

Verify that a selected set of bits in i are all set to one.

mask Input 32-bit integer. If bit n of mask is set to 1 then the corresponding bit of i
will be checked. Otherwise bit n will not be checked.

i Input 32-bit integer variable to be checked.

ierr Non-zero if the test fails. Thus ierr = 0 means that all checked bits in i are 1.

14

7 Character String Manipulations

In this section we describe a few routines which perform elementary character string
manipulations. It is recommended to explicitly initialize strings to a series of blank
characters at program start-up. This is easily done by using smb cfill.

call SMB CFILL (char, string)

Fill the character variable string with the character char.

char Input one-character string.

string Character string declared character*n in the calling routine. On exit all n
characters of string will be set to char.

call SMB CLEFT (string)

Left adjust the characters in string, padding blanks to the right.

call SMB CRGHT (string)

Right adjust the characters in string, padding blanks to the left.

call SMB CUTOL (string)

Translate the character variable string to lower case.

call SMB CLTOU (string)

Translate the character variable string to upper case.

leng = IMB LENOC (string)

Returns the position of the rightmost non-blank character in string. This function
measures the actual length of a string unlike the fortran function len() which returns
for a character*n variable the number n.

ipos = IMB FRSTC (string)

Returns the position of the leftmost non-blank character in string.

15

lval = LMB COMPC (stra, strb, n1, n2)

Case independent comparison of the character substrings stra(n1:n2) and strb(n1:n2).

stra Input character string declared in the calling routine as character*na stra.

strb Input character string declared in the calling routine as character*nb strb.

n1,n2 Range of characters to be compared. It is required that 1 ≤ n1 ≤ n2 ≤
min(na, nb); the comparison will yield .false. if this is not the case.

lval Set to .true. (.false.) if stra(n1:n2) and strb(n1:n2) do (do not) match.
Both lval and lmb compc should be declared logical in the calling routine.

Note that a case dependent comparison by the fortran statement

character*10 line1, line2

if (line1 .eq. line2) ...

is much faster than the case independent comparison provided by lmb compc.

lvar = LMB MATCH (string, substr, cwild)

Verify that the character string substr is contained in string. The string substr may,
or may not, contain a wild character cwild which will match any character in string.
The matching is case insensitive. Notice that, before processing, string is internally
converted to upper case with trailing blanks stripped off. Likewise substr is converted
to upper case but here both leading and trailing blanks are stripped off.

string Input character string of length ni, including leading but not trailing blanks.

substr Input character string of length ns, not including leading and trailing blanks.

cwild Input character (wild character acting as placeholder).

lvar Set to true (false) if substr is (is not) contained in string. Both lvar and
lmb match should be declared logical in the calling routine.

It is required that the substring contains at least one non-blank character (ns > 0) and
that it fits inside the string (ns ≤ ni). The function lmb match = .false. if this is not
the case. Here are some examples:

logical lmb match, lvar

lvar = lmb match (’Amsterdam ’, ’ am ’, ’*’) ! .true.

lvar = lmb match (’Amsterdam ’, ’*am ’, ’*’) ! .true.

lvar = lmb match (’Amsterdam ’, ’*am*’, ’*’) ! .false.

lvar = lmb match (’ Amsterdam’, ’*am*’, ’*’) ! .true.

16

call SMB ITOCH (ival, *chout, *lengout)

Convert an integer to a character string.

ival Input integer.

chout Character string containing, on exit, the digits of ival. Should be declared
character*n in the calling routine. If n is smaller than the number of digits
of ival, the string will be filled with asterisks (*).

lengout Number of characters encoded in chout.

With this routine you can nicely embed integers into text strings as shown below:

character*10 string

ierr = -12

call smb_itoch(ierr,string,leng) !unformatted write comes next

write(lun,*) ’Error ’,string(1:leng),’ encountered’

jerr = 12345

call smb_itoch(jerr,string,leng) !formatted write comes next

write(lun,’(’’Error ’’,A,’’ encountered’’)’) string(1:leng)

This code will produce the strings (note the snug fit of the numbers)

Error -12 encountered

Error 12345 encountered

8 String Formatter

A powerful feature of fortran is the use of strings as an internal file. A restriction is,
however, that the fortran77 standard does not allow list-directed (= free-format) read
from internal files. For this reason we provide the routine smb sfmat that determines
the format of an arbitrary string so that one can do a formatted read on that string.

call SMB SFMAT (stin, *stout, *fmt, *ierr)

Bring a free-format input string into a standard format and give the fortran format
descriptor of the reformatted string.

stin Input character string. This string will be parsed into words and each word will
be classified and reformatted (if necessary) as is described below.

stout Output character string with the (reformatted) input words. Must be declared
character*n in the calling routine, with n large enough to hold the reformatted
input string (error condition if n too small).

fmt Output character string with the fortran format descriptor of stout. Should
be declared character*m in the calling routine, with m large enough to hold the
format descriptor (error condition if m too small).

17

ierr Output error flag (note that stout and fmt will be undefined upon error):

0 All OK.

1 Empty input string.

2 Found unbalanced quotes in stin.

3 Wordcount exceeded (max 100 words per string).

4 Wordlength exceeded (max 120 characters per word).

5 Not enough space in stout.

6 Not enough space in fmt.

The input string stin is parsed into words (these are defined as substrings separated
by one or more blanks) and each word is classified as follows.

L Logical. A single T or F in upper case;

I Integer. Any signed or unsigned string of digits. Examples: 12, -12, +12;

F Floating point number. Any signed or unsigned string of digits with a leading,
embedded or trailing decimal point. Examples: -.12, 12., 1.2. Note that the first
two numbers will be reformatted to -0.12 and 12.0, respectively;

E Floating point number in exponentional format. This is the character E or e pre-
ceded by a signed or unsigned integer or foating point number (mantissa) and
followed by a signed or unsigned integer (exponent). Examples: .12E1, 1.2E0,
12.E-1, 12e-1. These will all be reformatted to 0.12E1;

D As above, but now in D-format;

Q Quoted string. Anything embedded in double single quotes, like ’’foo bar’’ ;5

A Character string. Any word that is not classified as L, I, F, E, D or Q.

The use of the string formatter is illustrated by the datacard processor presented below.

Suppose that we want to steer a program with datacards.

MYSUB .3

MYSUB 2D-4 12.

The first card should call mysub(par1,par2) with a default value for par2 while the
second card should call that same subroutine but with both parameters taken from
the card. From this example we see two desirable features of a datacard processor:
(i) handling of variable length parameter lists6 and (ii) handling of free-format input.

5A literal string in fortran is embedded in single quotes: foo → ’foo’. Quotes inside the string
are represented by double quotes, thus: foo’s → ’foo’’s’. To process quoted strings, the formatter
looks for opening quotes which are either those at the beginning of a string, or those preceded by a
blank. When opening quotes are detected, all following characters are classified as quoted string (Q)
until closing quotes are found (error condition if not). Closing quotes are either those followed by a
blank, or those at the end of the string. Quotes inside (quoted) strings are allowed, as long as they
cannot be mistaken for a pair of opening and closing quotes. For instance, Bayes’ theorem can be
passed as a 2-word string ’Bayes’’ theorem’, but not as a quoted string ’’’Bayes’’ theorem’’’

because that would stand for the two words Bayes (without apostroph) and theorem’ (with apostroph).
In any case, if you use quoted strings it is always a good idea to print the output string stout and the
format descriptor fmt to check that the formatter does what is intended.

6With the restriction that optional parameters should be put at the end of the list.

18

The first requirement can be fulfilled by first trying to read the datacard with two param-
eters and then, upon error, read it again with one parameter. The second requirement
can in principle be fulfilled by a fortran list-directed read.

character*5 key

read(unit=lun,fmt=*,err=100,end=100) key, par1, par2

Reading the first card in this way indeed produces an error, but not because the param-
eter list is exhausted but because the list-directed read skips to the next record and tries
to read the character string MYSUB into the floating point variable par2. This brings us
to the third requirement that (iii) only one card should be read at the time. This cannot
be done with a list-directed read which may span records to fulfill the parameter list.

A solution to this is to read the datacard as a character string. Thus we enclose the
cards in quotes (note that the alignment of the quotes below is irrelevant)

’ MYSUB .3 ’

’ MYSUB 2D-4 12. ’

and code the card reading loop as

character*120 dcard

idum = 0

do while(idum.eq.0)

read(unit=lun,fmt=’(A)’,err=100,end=100) dcard

enddo

100 continue

This code clearly does a card-by-card reading of a datacard file. It also restricts the
length of a card to 120 characters7 but this is not much of a problem since longer cards
tend to violate a fourth requirement: (iv) a datacard must be easy to read on a terminal.

After reading a card, the key (here with a length of 5 characters) can be separated from
the parameter list by some straight forward character string manipulation.8

character*120 dcard, upars

character*5 key5

i1 = imb_frstc(dcard)

key5 = dcard(i1:i1+4)

upars = dcard(i1+5:)

Now we can use the string upars as an internal file and fetch the parameters from that
string by a list-directed read

read(unit=upars,fmt=*,end=10,err=10) par1, par2

7Cards of less than 120 characters are blank padded while longer cards are just truncated.
8To keep things simple we do not handle here empty strings, strings with only one word (no parameter

list) and strings where the first word is not 5 characters long.

19

This probably works on your platform but list-directed read from internal files is not
supported by the fortran77 standard so that this call is not guaranteed to be portable.

A solution is provided by calling the routine smb sfmat that takes as an input any char-
acter string (upars, say) and produces a re-formatted output string (fpars), together
with a format descriptor (fmt), thus:

call smb_sfmat(upars, fpars, fmt, ierr)

For the example cards above this gives:

key upars fpars fmt

MYSUB .3 0.3 (1X,F3.1)

MYSUB 2D-4 12. 0.2D-3 12.0 (1X,D6.1,1X,F4.1)

Now we can write portable code to fetch the parameters by a formatted read.

character*120 upars, fpars, fmt

call smb_sfmat(upars, fpars, fmt, ierr)

read(unit=fpars,fmt=fmt,end=10,err=10) par1, par2

Here are examples of keys that have a quoted string as a parameter:

’ LOGIC T ’’F’’ ’

’ VERSN ’’Version 3.6 12-AUG-2014’’ ’

’ NAMES P.A.M. Dirac ’’P.A.M. Dirac’’ ’

The first card has one logic (L1) and one character parameter (A1). The numbers in the
second card are not classified as such since they are part of a quoted string (A23). The
last card has three parameters: initials (A6), last name (A5) and full name (A12) which
must be quoted because it contains an embedded blank.

Note that in some exceptional cases the format descriptor can become quite long as in

stout = ’ X X X X ’ fmt = ’(1X,A1,1X,A1,1X,A1,1X,A1)’

where each item occupies 2 characters in stout, but 6 characters in fmt.9 Because stout
and fmt are declared in the calling routine it is of course easy to adjust their size in
case smb sfmat complains about a lack of space.

Putting it all together, we arrive at the card reading code shown in Figure 2. Note that
the code, as it stands, does not handle the reading of blank lines from the input file, keys
without parameters, keys that are not 5 characters long and errors from smb sfmat.

9The formatter is not smart enough to generate repeat counts and write fmt = ’(4(1X,A1))’.

20

subroutine cardread(lun)

character*120 dcard, fpars, fmt

character*5 key5

idum = 0

do while(idum.eq.0)

read(unit=lun,fmt=’(A)’,err=200,end=100) dcard

i1 = imb_frstc(dcard)

key5 = dcard(i1:i1+4)

call smb_sfmat(dcard(i1+5:), fpars, fmt, ierr)

if(key5 .eq. ’MYSUB’) then

read(unit=fpars,fmt=fmt,end=10,err=10) par1, par2

call MYSUB(par1,par2)

return

10 read(unit=fpars,fmt=fmt,end=20,err=20) par1

par2 = default

call MYSUB(par1,par2)

return

20 stop ’Error reading MYSUB datacard’

elseif(key5 .eq. ...) then

..

process other keys, if any

..

else

stop ’Unknown card’

endif

enddo

100 return

200 stop ’Error reading input file’

end

Figure 2: Listing of a datacard reading routine showing the use of the string formatter
smb sfmat and the handling of a variable length parameter list.

21

Index

Banded Equations
IMB LBADR, 8
IMB LLADR, 8
IMB LTADR, 8
IMB UBADR, 8
IMB ULADR, 8
IMB UTADR, 8
SMB LBEQS, 8
SMB LLEQS, 8
SMB LMEQS, 6
SMB LTEQS, 8
SMB UBEQS, 8
SMB ULEQS, 8
SMB UTEQS, 8

Bitwise Operations
IMB GBITN, 14
IMB SBITS, 14
IMB TEST0, 14
IMB TEST1, 14
SMB GBITS, 14
SMB SBIT0, 14
SMB SBIT1, 14

Character Strings
IMB FRSTC, 15
IMB LENOC, 15
LMB COMPC, 16
LMB MATCH, 16
SMB CFILL, 15
SMB CLEFT, 15
SMB CLTOU, 15
SMB CRGHT, 15
SMB CUTOL, 15
SMB ITOCH, 17

Fast Interpolation
DMB POLIN1, 13
DMB POLIN2, 13
SMB POLWGT, 12

Linear Store
IMB INDEX, 10
SMB BKMAT, 9

String Formatting
SMB SFMAT, 17

Utilities
DMB DILOG, 4

DMB GAMMA, 3
DMB GAUSS, 4
RMB URAND, 6
SMB ASORT, 6
SMB DERIV, 4
SMB DMEQN, 5
SMB DMINV, 5
SMB DSINV, 5
SMB RSORT, 6

22

