Fast pQCD Calculations for QCD Fits

"HERA and the LHC" Workshop, CERN, 7 June 2006

Thomas Kluge, DESY Klaus Rabbertz, Univ. Karlsruhe Markus Wobisch, FNAL

basic concept: shown e.g. in talks at DIS06, TeV4LHC

this talk: status of project, selected details

Motivation

х

Scope of fastNLO

Produce ready to use packages for pdf fitters

```
Package contains precalculated table, FORTRAN (alternative: C++) code returns cross sections, with interface to \alpha_s and pdfs
```

Results in bins and units etc. as published

Provide info of stat. and syst. precision of the result binwise

Up to now: use NLOJET++ for DIS and hadron-hadron at NLO plus 2-loop threshold corrections (hadron-hadron) Kidonakis, Owens Tables available for HERA, TEVATRON, RHIC, LHC Product available for download since June, 5, 2006

Not only fits, convenient for estimation of theory uncertainties, etc. fastNLO going to be used for upcoming publications of H1, ZEUS, D0, STAR

Bonus: quick and easy access to cross sections via web interface

remaining part of the talk, details about precision, efficiency, some results, plans

fastNLO

Efficiency of pdf interpolation

Need to interpolate pdfs between discrete points in x

Hadron-hadron: no brute force (ultra fine binning) due to quadratic growth of table

Get best precision for given number of x "bins" Crucial: steep, curved regions

Need many points there: equidistant bins after transfomation, here sqrt(log(1/x))

cross section per x-bin (arbitrary units)

 $x_1, x_2 \rightarrow x_{min}, x_{max}$ (exploit symmetry)

Issue: forward region phasespace squeezed into small range, reason for sqrt(log(1/x))

LHC inclusive jet scenario

Reweighting

Interpolation of pdfs hampered by curvature

Reweight pdfs! Instead $x \cdot pdf(x)$ interpolate $f(x) \cdot pdf(x)$

After reweighting: use cubic interpolation for remaining curvature...

Cubic Interpolation

HERA/LHC Workshop 2006, Th. Kluge, DESY

Precision

TEVATRON Run II

Scales

factorisation scale: choose between 4 scales: $1/4p_t$, $1/2p_t$, p_t , $2p_t$ renormalisation scale: arbritary scale variation possible (for LO+NLO part)

Measured bins span range in jet p_t , what to choose when calculating table? Bin center not exactly known (depends on pdf, α_s)... Interpolate!

1) small p, range: fixed scale at middle of bin

2) larger range: interpolation with Bernstein polynomials, (used e.g. for HERA jets)

Applications

Inclusive jet data: several processes, experiments, center of mass energies and p, ranges

Predictions obtained with fastNLO based on NLOJET++, CTEQ 6.1 pdfs and $\alpha_s(m_z)$ =0.118

Good description of all the data

Can be used in fits!

Applications

Available Applications

				Tevatron Run I: pp-bar @ sqrt(s)=1.8TeV			
			fnt1001	CDF incl. jets, cone	. jets, cone algo (ET)		
		LHC: pp @ sqrt(s)=14TeV		hep-ph/0102074	(the data at Durham)		
fnl2004	test-scenario for ATLAS, incl. jets, kT algo (pT, y)			code	table (midpoint), table (Rsep)		
	code	table	fnt1002	DØ incl. jets, cone algo			
	Tevatron Run II: pp-bar @ sqrt(s)=1.96TeV			hep-ex/0011036	(the data at Durham)		
fnt2001				code	table (midpoint), table (Rsep)		
				CDF dijets, cone alg			
	code	table1 and table2		hep-ex/0012013 code	(the data at Durham)		
fnt2002	CDF incl. jets, cone algo (pT)				table (midpoint), table (Rsep) (s)=630GeV, cone algo (ET)		
1112002				hep-ex/0012046	(the data at Durham)		
	hep-ex/0512020,	(the data at Durham)		code	table (midpoint), table (Rsep)		
	code table (midpoint), table (Rsep)			DØ incl. jets, ratio 63	30/1800GeV, cone algo (xT)		
fnt2003	CDF incl. jets, kT algo (pT)			hep-ex/0012046	(the data at Durham)		
	hep-ex/0512062	(the data at Durham)		code	table1, table2 (midpoint) or table1 table2 (Rsep)		
	code	table	fnt1007	CDF dijets, cone alg	qo (mass)		
				hep-ex/9912022	(the data at Durham)		
			_	code	table (midpoint), table (Rsep)		
6-640.04	HERA: ep @ sqrt(s)=300GeV or 320GeV		fnt1008	DØ dijets, cone algo (m	o (mass)		
fnh1001	H1 incl. jets, kT algo			hep-ex/0012046	(the data at Durham)		
	hep-ex/0010054	(see table 2 in hep-ex/0010054)		code	table (midpoint), table (Rsep)		
	code	table					
fnh1002	ZEUS incl. jets, kT algo (ET, Q2)						
	hep-ex/0208037	(the data at Durham)					
	code	table			All with bigh statistics		
fnh1003	H1 incl. jets, kT algo (ET) @low Q2				All with high statistics,		
	hep-ex/0206029	(the data at Durham)			typically 6 CPU months		
	code	table			typically o of o months		
fnh1004	H1 dijets, kT algo (ET, Q2)						
	hep-ex/0010054 (the data at Durham)						
	code	table			Combined effort of		
		RHIC: pp @ sqrt(s)=200GeV			H1 Farm, D0 Farm and GRID		
fnr0001	STAR preliminary incl. jets, cone algo (pT)				HI Fami, DU Fami and GRID		
	code table (midpoint)						

Web Interface to fastNLO

Choose measurement, pdf set and member, α_s and scales....

Web Interface to fastNLO

<pre>fastNLO: compute the cross section ###################################</pre>								
fastNLO - version 1.4 Jan. 31, 2006								
* Thomas Kluge, Klaus Rabbertz, Markus Wobisch *								
if you use this code, please cite as reference:								
T. Kluge, K. Rabbertz and M. Wobisch,								
<pre>publication in preparation, (hep-ex No. to be added) </pre>								
now reading the coefficient table:								
tableformat is version 1.4 26200000000 events in LO								
24600000000 events in NLO								
2764800 events in NNLO-NLL-(threshold-corrections)								
No. of x bins: 12								
this table contains: d2sigma-jet_dpT_dy_(pb_GeV)								
as published in: not-published								
by: ATLAS-test-scenario								
reaction: proton-proton								
process: inclusive jets								
total No. of observable bins: 103								
<pre>jet algo: kT algorithm parameter 1: D = 0.7</pre>								
parameter 1: D = 0.7								
the single contributions have been computed								
using the following codes:								
LO								
<pre>by: NLOJET++ NLO</pre>								
by: NLOJET++								
NNLO-NLL-(threshold-corrections)								
by: Kidonakis-Owens								
for NLOJET++ please cite:								
Z. Nagy, Phys. Rev. Lett. 88, 122003 (2002),								
Z. Nagy, Phys. Rev. D68, 094002 (2003).								
the 2-loop threshold corrections for the inclusive jet								
cross section in pp and ppbar have been computed by:								
N. Kidonakis and J.F. Owens - please cite								
N. Kidonakis, J.F. Owens, Phys. Rev. D63, 054019 (2001).								

fastNLO) - results	for d2si	igma-jet dpT d	iv (pb GeV)						
	sections:		LO	NLOcorr	2-loop	total				
m	uf/mu0= 1	. mur/	/mu0= 1.		-					
from 0 0.8 in: y										
pT in GeV	60.00-	80.00:	0.1300E+06	0.2101E+05	0.2955E+05	0.1805E+06				
pT in GeV	80.00-	100.00:	0.3811E+05	0.6493E+04	0.7745E+04	0.5235E+05				
pT in GeV	100.00-	130.00:	0.1184E+05	0.1977E+04	0.2197E+04	0.1602E+05				
pT in GeV	130.00-	160.00:	0.3617E+04	0.6351E+03	0.6145E+03	0.4866E+04				
pT in GeV	160.00-	200.00:	0.1210E+04	0.2100E+03	0.1911E+03	0.1611E+04				
pT_in_GeV	200.00-	250.00:	0.3766E+03	0.6726E+02	0.5525E+02	0.4991E+03				
pT_in_GeV	250.00-	300.00:	0.1256E+03	0.2277E+02	0.1723E+02	0.1656E+03				
pT_in_GeV	300.00-	350.00:	0.4964E+02	0.9113E+01	0.6447E+01	0.6520E+02				
pT_in_GeV	350.00-	400.00:	0.2211E+02	0.4131E+01	0.2742E+01	0.2898E+02				
pT_in_GeV	400.00-	450.00:	0.1079E+02	0.2067E+01	0.1285E+01	0.1414E+02				
pT_in_GeV	450.00-	500.00:	0.5650E+01	0.1087E+01	0.6497E+00	0.7387E+01				
pT_in_GeV	500.00-	600.00:	0.2476E+01	0.4901E+00	0.2730E+00	0.3239E+01				
pT_in_GeV	600.00-	700.00:	0.8916E+00	0.1813E+00	0.9326E-01	0.1166E+01				
pT_in_GeV	700.00-	800.00:	0.3642E+00	0.7596E-01	0.3645E-01	0.4766E+00				
pT_in_GeV	800.00-	900.00:	0.1635E+00	0.3504E-01	0.1576E-01	0.2143E+00				
pT_in_GeV	900.00-	1000.00:	0.7893E-01	0.1733E-01	0.7368E-02	0.1036E+00				
pT_in_GeV	1000.00-	1200.00:	0.3095E-01	0.7007E-02	0.2788E-02	0.4074E-01				
pT_in_GeV	1200.00-	1400.00:	0.9430E-02	0.2238E-02	0.8150E-03	0.1248E-01				
pT_in_GeV	1400.00-	1600.00:	0.3234E-02	0.8099E-03	0.2718E-03	0.4316E-02				
pT_in_GeV	1600.00-	1800.00:	0.1205E-02	0.3129E-03	0.9957E-04	0.1618E-02				
pT_in_GeV	1800.00-	2000.00:	0.4759E-03	0.1284E-03	0.3905E-04	0.6434E-03				
pT_in_GeV	2000.00-	2200.00:	0.1958E-03	0.5551E-04	0.1611E-04	0.2674E-03				
pT_in_GeV	2200.00-	2400.00:	0.8285E-04	0.2437E-04	0.6895E-05	0.1141E-03				
pT_in_GeV	2400.00-	2600.00:	0.3568E-04	0.1095E-04	0.3028E-05	0.4966E-04				
pT_in_GeV	2600.00-	2800.00:	0.1552E-04	0.4956E-05	0.1353E-05	0.2183E-04				
pT_in_GeV	2800.00-	3000.00:	0.6765E-05	0.2256E-05	0.6106E-06	0.9631E-05				
pT_in_GeV	3000.00-	3500.00:	0.1811E-05	0.6408E-06	0.1739E-06	0.2626E-05				
pT_in_GeV	3500.00-	4500.00:	0.1154E-06	0.4618E-07	0.1292E-07	0.1745E-06				
from		1.6 in:	У							
pT_in_GeV	60.00-	80.00:	0.1160E+06	0.1968E+05	0.2947E+05	0.1651E+06				
pT_in_GeV		100.00:	0.3347E+05	0.5487E+04	0.7472E+04	0.4643E+05				
pT_in_GeV		130.00:	0.1025E+05	0.1792E+04	0.2056E+04	0.1410E+05				
pT_in_GeV	130.00-	160.00:	0.3078E+04	0.5313E+03	0.5566E+03	0.4166E+04				
pT_in_GeV	160.00-	200.00:	0.1014E+04	0.1786E+03	0.1682E+03	0.1361E+04				
pT_in_GeV	200.00-	250.00:	0.3106E+03	0.5500E+02	0.4717E+02	0.4128E+03				
pT_in_GeV	250.00-	300.00:	0.1019E+03	0.1854E+02	0.1425E+02	0.1347E+03				
pT_in_GeV	300.00-	350.00:	0.3963E+02	0.7346E+01	0.5181E+01	0.5216E+02				

... and obtain a second later cross sections, precision based on months of CPU time

Summary

- Available: fastNLO on the web with jet observables from
 - HERA, TEVATRON, RHIC, LHC
 - LO+NLO (NLOJET++), hadron-hadron: 2-loop threshold corrections
- After >1 year of hard work (beta released 9 months ago): Ready, download **now**: code to be used for fits, instructions how to use
 - needs 0.5ms per point
 - precision typically better than 0.1%
 - ... to be used in global pdf fits

Plans:

- include photoproduction (when included in NLOJET++)
- other processes, Drell-Yan, ...

Towards V2.0:

- establish future proof standard for tables, XML (code exists, using Xerces DOM)
- fastNLO could be a common repository of calculations (not only NLO), together with www.arXiv.org and Durham database -> future impact of today measurements