

fastillo₂

New features in version 2 of the fastNLO project

The fastNLO Collaboration

Daniel Britzger, Thomas Kluge, Klaus Rabbertz, Fred Stober, Markus Wobisch (DESY, Liverpool, KIT, KIT, Louisiana Tech)

DIS 2012 29. March 2012

Outline

- Motivation
- FastNLO concept
- Applications
- New features of FastNLO v2
- Generalized Concept in FastNLO v2
- FastNLO Precision and Examples
- Outlook

Motivation

Interpretation of experimental data relies on

Availability of reasonably fast theory calculations
Often needed: Repeated computation of (almost) same cross sections

Examples for a specific analysis:

Use of various PDFs (CTEQ, MSTW, NNPDF, ...) for data/theory comparison

Determine PDF uncertainties

Derivation of scale uncertainties

Use data set in fit of PDFs and/or $\alpha_s(M_Z)$

Sometimes NLO predictions can be computed fast But some are very slow

e.g. jet cross sections, Drell-Yan, ...

Need procedure for fast repeated computations of NLO cross sections

Use fastNLO (in use by most PDF fitting groups)

The fastNLO concept

Jetproduction in DIS

Jet cross sections are very slow to calculate

$$\sigma = \sum_{a,n} \int_{0}^{1} dx \alpha_{s}^{n}(\mu_{r}) \cdot c_{a,n}(\frac{x_{Bj}}{x}, \mu_{r}, \mu_{f}) \cdot f_{a}(x, \mu_{f})$$

Idea

Remove PDF from convolution integral

fastNLO Concept

Introduce set of n discrete x-nodes x_i's

- with $x_n < ... < x_i < ... < x_0 = 1$

Around each x_i define Eigenfunction $E_i(x)$

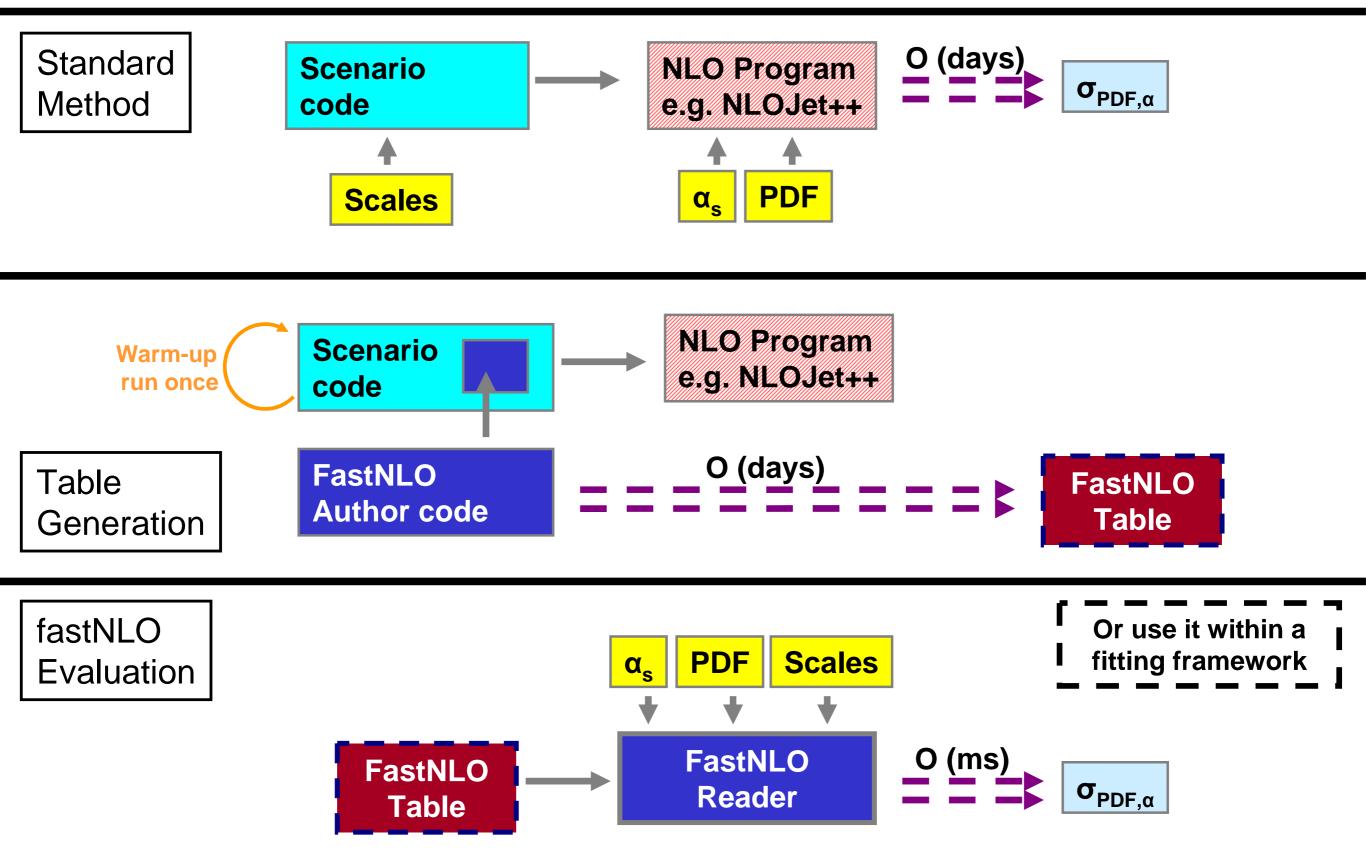
- $E_i(x_i) = 1$, $E_i(x_j) = 0$ $(i \neq j)$, $\Sigma_i E_i(x) = 1$ for all x

Single PDF is replaced by a linear combination of eigenfunctions

$$f_a(x) \cong \sum_i f_a(x_i) \cdot E^{(i)}(x)$$

Convolution of perturbative coefficients with PDFs and α_s is now replaced by a sum

$$\boldsymbol{\sigma} \cong \sum_{a,n,i} \boldsymbol{\alpha}_s^n f_a(x_i) \widetilde{\boldsymbol{\sigma}}_{a,n}^{(i)}$$


-> More technical details: TeV4LHC Workshop 2005 (Talk: M. Wobisch) and Pascaud, Zomer: LAL 94-42

-> We only have to store a table of the convolution of the pert. coefficients with the interpolation kernel

The fastNLO concept

Applications

3138

repeated

NLO

Application area

Can be used for any observable in hadroninduced processes

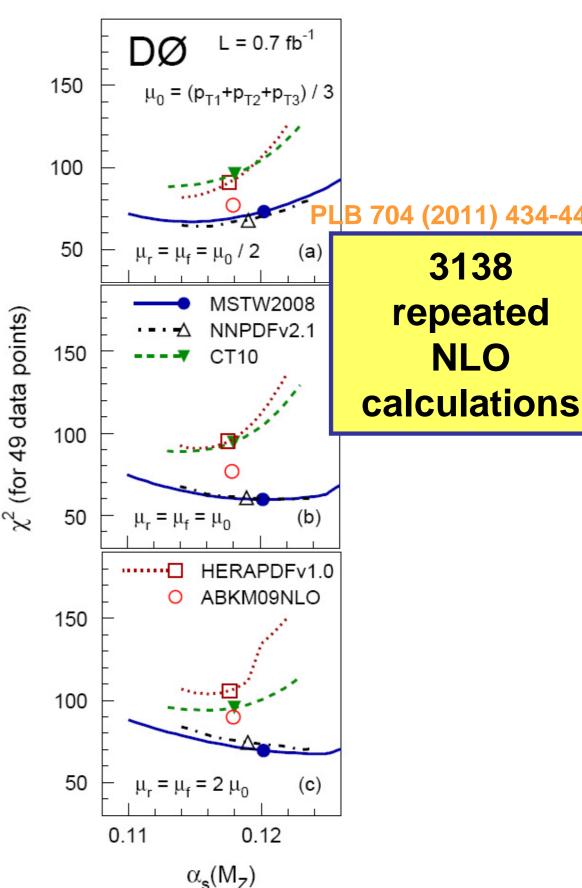
Hadron-hadron, DIS, Photoproduction, Fragmentation functions

Theory prediction

Concept does not include the theoretical calculation itself

Requires flexible computer code, e.g.:

- NLOJET++ (z. Nagy PRD68 2003, PRL88 2002)
- Threshold corrections (Kidonakis, Owens, PRD 63, 054019 (2001)


Although labeled "fastNLO" method can be used at any order

Application procedure

During the first computation no time is saved Any further recalculation takes only O(ms)

Typical Applications

PDF or α_s fits PDF uncertainties: e.g. PDF4LHC recommendation needs 239 calculations

New Features in FastNLO v2.0

Technical Features of pre-computed fastNLO tables

Automatic scan of smallest x-value
Flexible # x-nodes for analysis bins
Improved interpolation in ren./fact. scales
Arbitrary number of dimensions for binning of observable

Features of fastNLO Reading Tools

Comprehensive α_s evolution provided

- 2-,3-,4-loop iterative solution, flavor matching ON/OFF, etc...
- Interface to external α_s evolutions e.g. LHAPDF, QCDNUM, etc...

Interface to PDF from LHAPDF and QCDNUM Easy to install (autotools)

C++ and Fortran version!

- agreement at double precision O(10⁻¹⁰)

FastNLO Reader

Reader_f

Reader_cc

No further dependencies (No ROOT, No CERNLIB, etc...)

Additional contributions in FastNLO v2.0

Much more flexible Table format Release on February 14

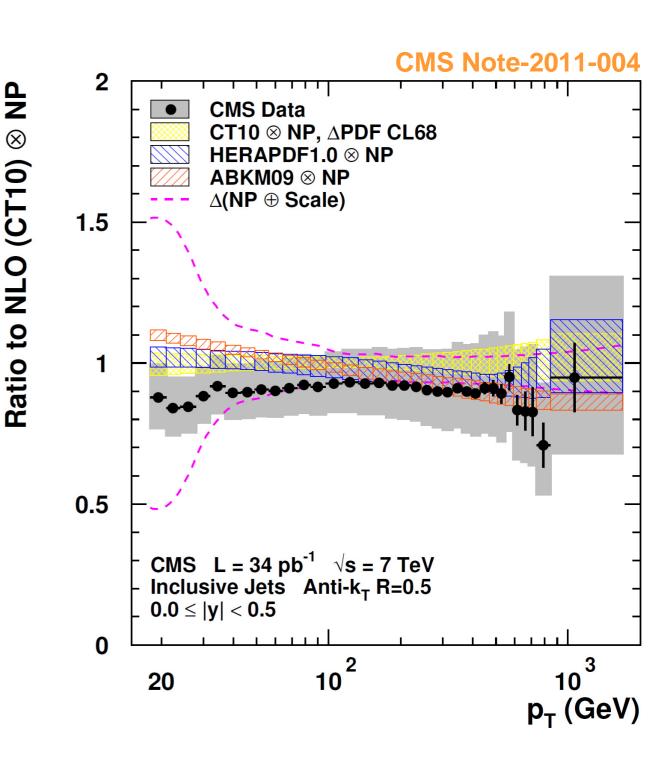
Format foresees

Threshold corrections (2-loop)

- Tables are available

New physics contributions

Correction factors

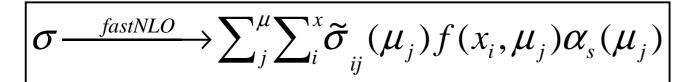

- Non-perturbative corrections
- With uncertainties

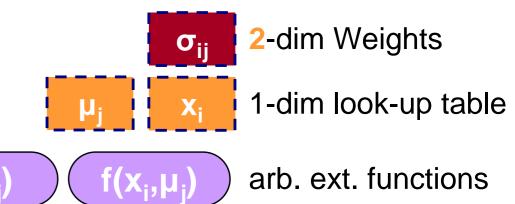
Data

- Including arb. number of correlated and uncorrelated uncertainties
- Correlation matrix

Electroweak corrections

Conversion tool for v1.4 tables

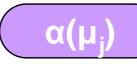



Generalized fastNLO concept in v2.0

We know

We can use variables from look-up tables for 'any' further calculation (like $\alpha_s(\mu))$

Generalized fastNLO concept in v2.0



We know

$$\sigma \xrightarrow{fastNLO} \sum_{j}^{\mu} \sum_{i}^{x} \widetilde{\sigma}_{ij}(\mu_{j}) f(x_{i}, \mu_{j}) \alpha_{s}(\mu_{j})$$

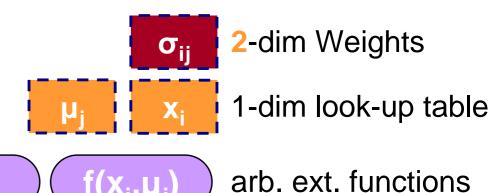
We can use variables from look-up tables for 'any' further calculation (like $\alpha_s(\mu)$)

arb. ext. functions

Scale independent weights

$$\omega(\mu_R, \mu_F) = \omega_0 + \log(\frac{\mu_R}{Q})\omega_R + \log(\frac{\mu_F}{Q})\omega_F$$

- 'log(μ/Q)' can be done at evaluation time
 μ's are 'freely' choosable functions
- $-\mu \rightarrow \mu(Q,p_T)$

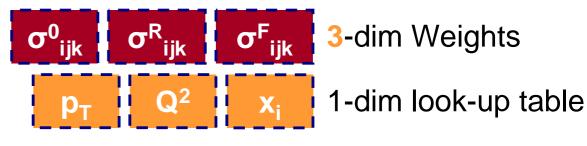

Generalized fastNLO concept in v2.0

We know

$$\sigma \xrightarrow{fastNLO} \sum_{j}^{\mu} \sum_{i}^{x} \widetilde{\sigma}_{ij}(\mu_{j}) f(x_{i}, \mu_{j}) \alpha_{s}(\mu_{j})$$

We can use variables from look-up tables for 'any' further calculation (like $\alpha_s(\mu)$)

Scale independent weights


$$\omega(\mu_R, \mu_F) = \omega_0 + \log(\frac{\mu_R}{Q})\omega_R + \log(\frac{\mu_F}{Q})\omega_F$$

- 'log(μ /Q)' can be done at evaluation time μ 's are 'freely' choosable functions - μ -> μ (Q, p_{τ})

We store scale independent contribution

Three tables holding the weights Further scale-variables -> $\sigma_{ijk...}$ need more dimensions

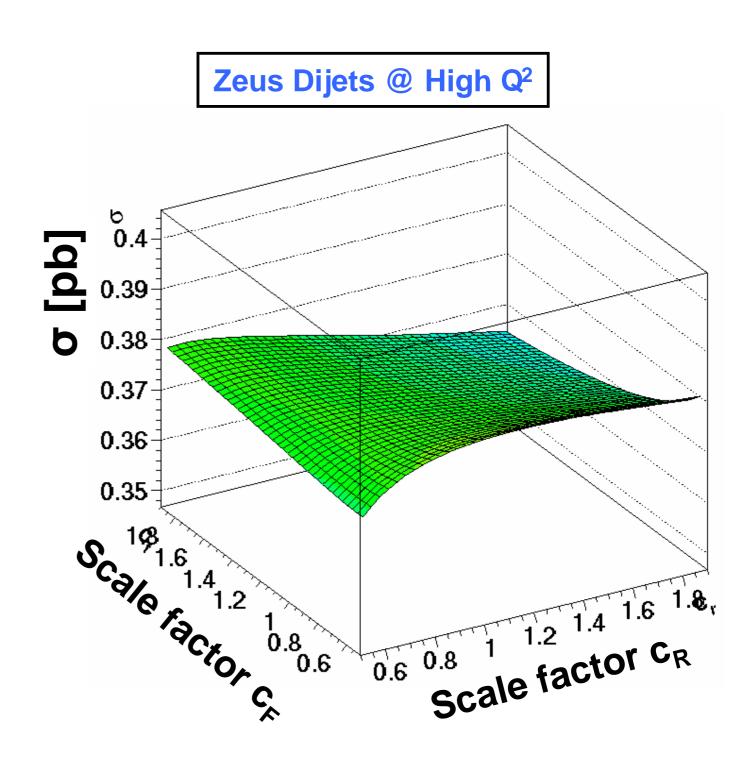
new in v2.0

 $\mu_{F}(Q,p_{T})$ $\mu_{R}(Q,p_{T})$ arb. ext. functions

- 1) We can choose μ_R independently from μ_F
- 2) We can choose the functional form of $\mu_{R/F}$ as functions of look-up-variables

New Features for Scales

When evaluating fastNLO cross section


Choose scale composition from previously stored scales e.g. $\mu_r^2 = (Q^2 + p_T^2)/2$ $\mu_r^2 = Q^2$ $\mu_r^2 = p_T^2$

Also scale variation for μ_r and μ_f are thus independently possible through

$$\mu_R^2 = c_R^2 \times (Q^2 + p_T^2) / 2$$

 $\mu_F^2 = c_F^2 \times Q^2$

New options for scans of scale dependence

Concept also implemented for pp and ppbar

fastNLO Precision

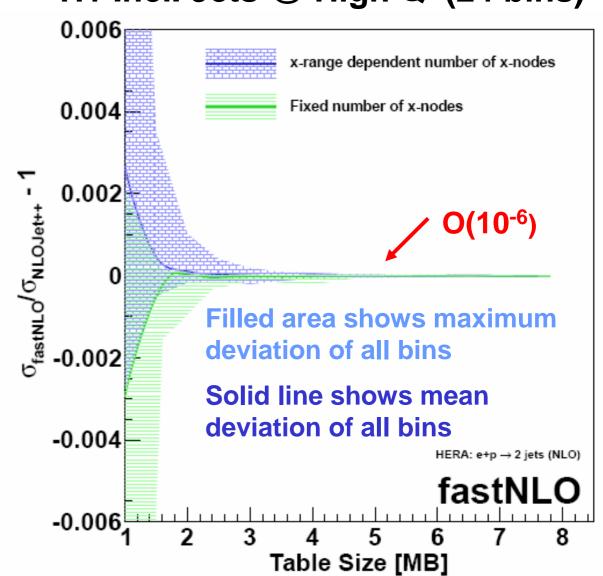
Free Parameters

x-nodes

scale nodes

-> Affect the interpolation precision

New feature in v2.0


Flexible # x-nodes

Number of x-nodes chosen depending on x-range

Comparison vs. 'plain' NLOJet++

Arbitrary precision possible For O(MB) tables, reach better than 1 per mille

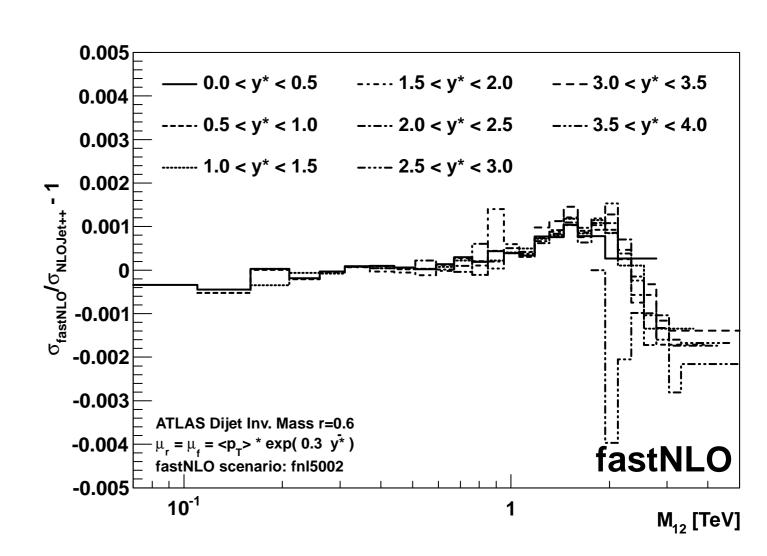
H1 Incl. Jets @ High Q² (24 bins)

Example: Scale studies with ATLAS Dijet M₁₂

pp and ppbar Scenarios

'flexible scale concept' works as well

ATLAS Dijet Invariant Mass, r=0.6


 p_T and y^* are stored in table Ren./fact. scale can be any function of (p_T, y^*)

Can study variations of ATLAS dijet scale choice p_T -exp(0.3-y*)

- -> We can vary parameter '0.3'
- -> We can use different functions (e.g. cosh)
- -> We can e.g. find optimal scale (FAC,PMS)

fastNLO vs. plain NLOJet++ calculation with free choice of ren./fac. scale

Precision ~ 10⁻³

Data/Theory Comparision of Jet Cross Sections

10 4

10³

 $\sqrt{s} = 300 \text{ GeV}$

 $\sqrt{s} = 318 \text{ GeV}$

 $\sqrt{s} = 546 \text{ GeV}$

 $\sqrt{s} = 630 \text{ GeV}$

 $\sqrt{s} = 1.8 \text{ TeV}$

 $\sqrt{s} = 1.96 \text{ TeV}$

 \circ CDF cone $0.1 < |\eta| < 0.7$

• DØ cone $0.0 < |\eta| < 0.5$

• CDF cone $0.1 < |\eta| < 0.7$ • DØ cone $0.0 < |\eta| < 0.5$

Arr CDF k_T 0.1 < |y| < 0.7 Arr CDF cone 0.1 < |y| < 0.7

cone 0.0 < |y| < 0.4

 $\sqrt{s} = 200 \text{ GeV}$

• STAR cone $0.2 < |\eta| < 0.8$

 $\circ \square \triangle \diamond \oplus$ ZEUS k_T Q²: from 125 to 5000 GeV²

 $\circ \square \triangle \diamond \Phi$ ZEUS k_{τ} Q²: from 125 to 5000 GeV²

fastNLO

pp

DIS

 $k_{\rm T}$ Q²: from 150 to 5000 GeV²

 $k_{\rm T}$ Q²: from 150 to 5000 GeV²

pp-bar

Comparision of inclusive jet data

STAR @ RHIC H1 and ZEUS @ HERA CDF and D0 @ TeVatron CMS and ATLAS @ LHC

Data/theory comparision Compatible with NLO pQCD

hadron-hadron including 'threshold corrections' O(2-loop)

 $10^{-1} \begin{bmatrix} \sqrt{s} = 7 \text{ TeV} \\ -1 \text{ ATLAS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ ATLAS anti-}k_T \text{ R=0.4 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.5 } |y| < 0.5 \end{bmatrix}$ = all pQCD calculations using NLOJET++ with fastNLO: $= \alpha_s(M_z) = 0.118 \quad |\text{MSTW2008 PDFs} \quad |\text{MR} = \mu_F = p_{T \text{ jet}} \\ \text{NLO plus non-perturbative corrections} \quad |\text{pp, pp: incl. threshold corrections (2-loop)}$ $= 10^{-1} \text{ ATLAS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.4 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.4 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.5 } |y| < 0.5 \\ -1 \text{ ATLAS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.3 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.5 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.5 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.5 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.5 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.5 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.5 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.5 \\ -1 \text{ CMS anti-}k_T \text{ R=0.6 } |y| < 0.5 \\ -1 \text{ CMS a$

inclusive jet production

in hadron-induced processes

 $(\times 2500)$

 p_{T} (GeV/c)

fastNLO, arXiv:1109:1310v1, 2011 here: updated plot!
See data references there.

Summary

Release

User code released

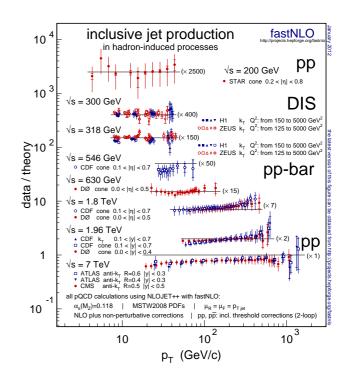
C++ and Fortran code (No further dependencies) Lots of calculations available for all experiments ATLAS, CMS, D0, CDF, ZEUS, H1, STAR

New features

Multiplicative and additive contributions

- threshold corrections, non-perturbative corrections, data, EW contribtions, new physics, etc...

Technicalities


- Automated x-scan, flexible number of x-nodes, Scale gets own dimension, improved interpolation, etc...

'Flexible scale' tables

Choose composition of μ_{R} and μ_{F}

Vary ren./fact. scales independently

Scale varyations also for higher orders without any recalculations or integrations (which might be slow again!)

-> Visit our website: http://fastnlo.hepforge.org

Summary

Release

User code released

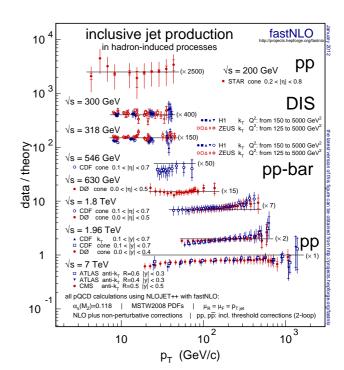
C++ and Fortran code (No further dependencies) Lots of calculations available for all experiments ATLAS, CMS, D0, CDF, ZEUS, H1, STAR

New features

Multiplicative and additive contributions

- threshold corrections, non-perturbative corrections, data, EW contribtions, new physics, etc...

Technicalities


- Automated x-scan, flexible number of x-nodes, Scale gets own dimension, improved interpolation, etc...

'Flexible scale' tables

Choose composition of μ_{R} and μ_{F}

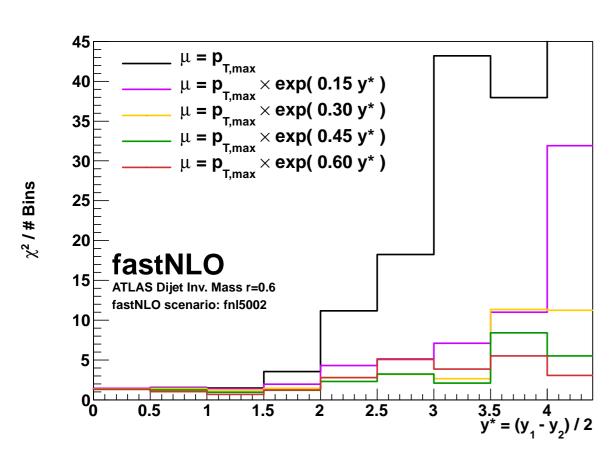
Vary ren./fact. scales independently

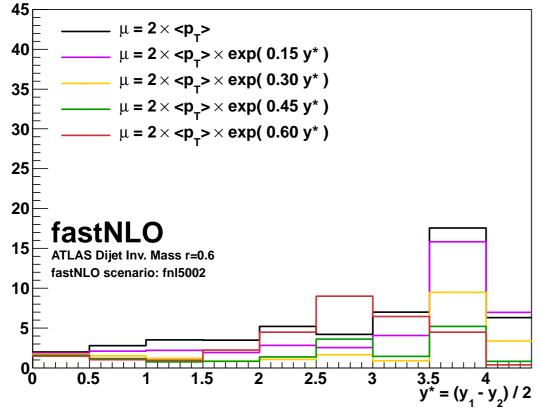
Scale varyations also for higher orders without any recalculations or integrations (which might be slow again!)

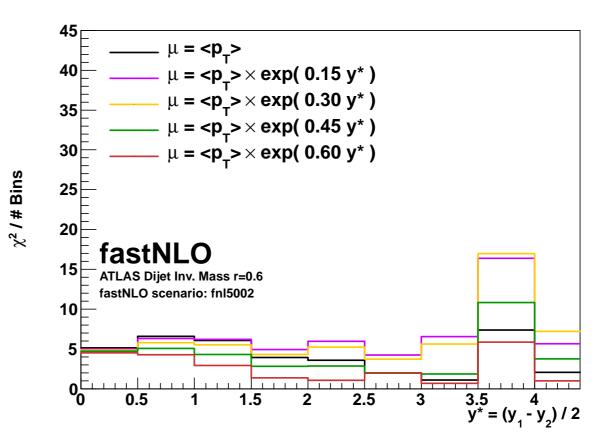
-> Visit our website: http://fastnlo.hepforge.org

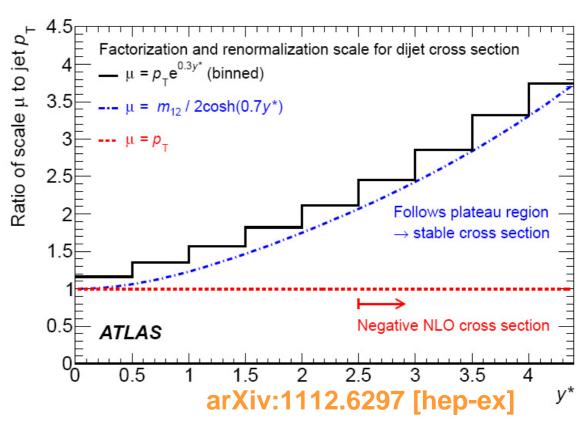
... after the hepforge transition

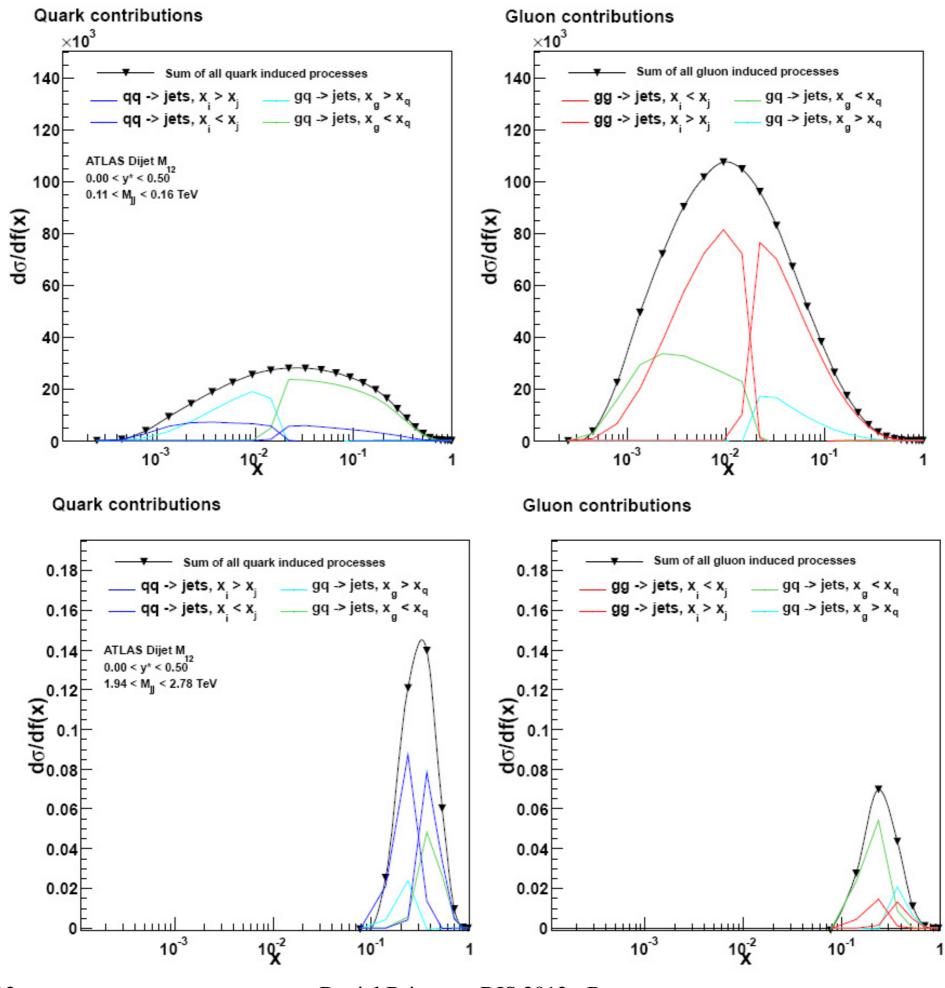
Backup






 χ^2 / # Bins


Stuying the scale choice of ATLAS



Applications

Application area

Can be used for any observable in hadroninduced processes

- Hadron-hadron
- DIS
- Photoproduction
- Fragmentation functions

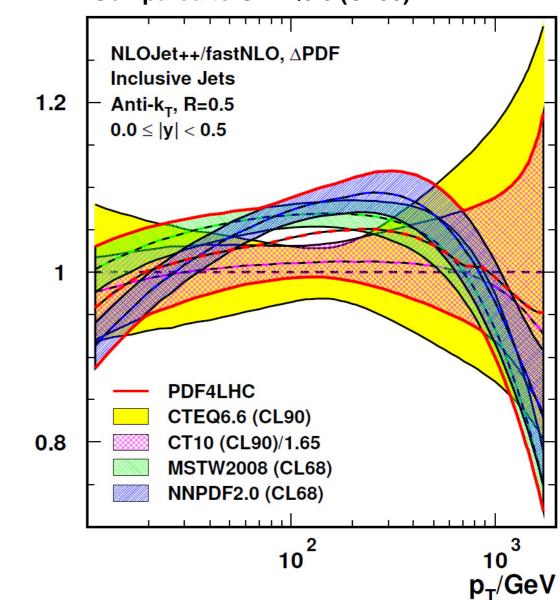
Theory prediction

Although labeled "fastNLO" method can be used at any order

Concept does not include the theoretical calculation itself

Requires flexible computer code, e.g.:

- NLOJET++ (z. Nagy PRD68 2003, PRL88 2002)
- Threshold corrections (Kidonakis, Owens, PRD 63, 054019 (2001))

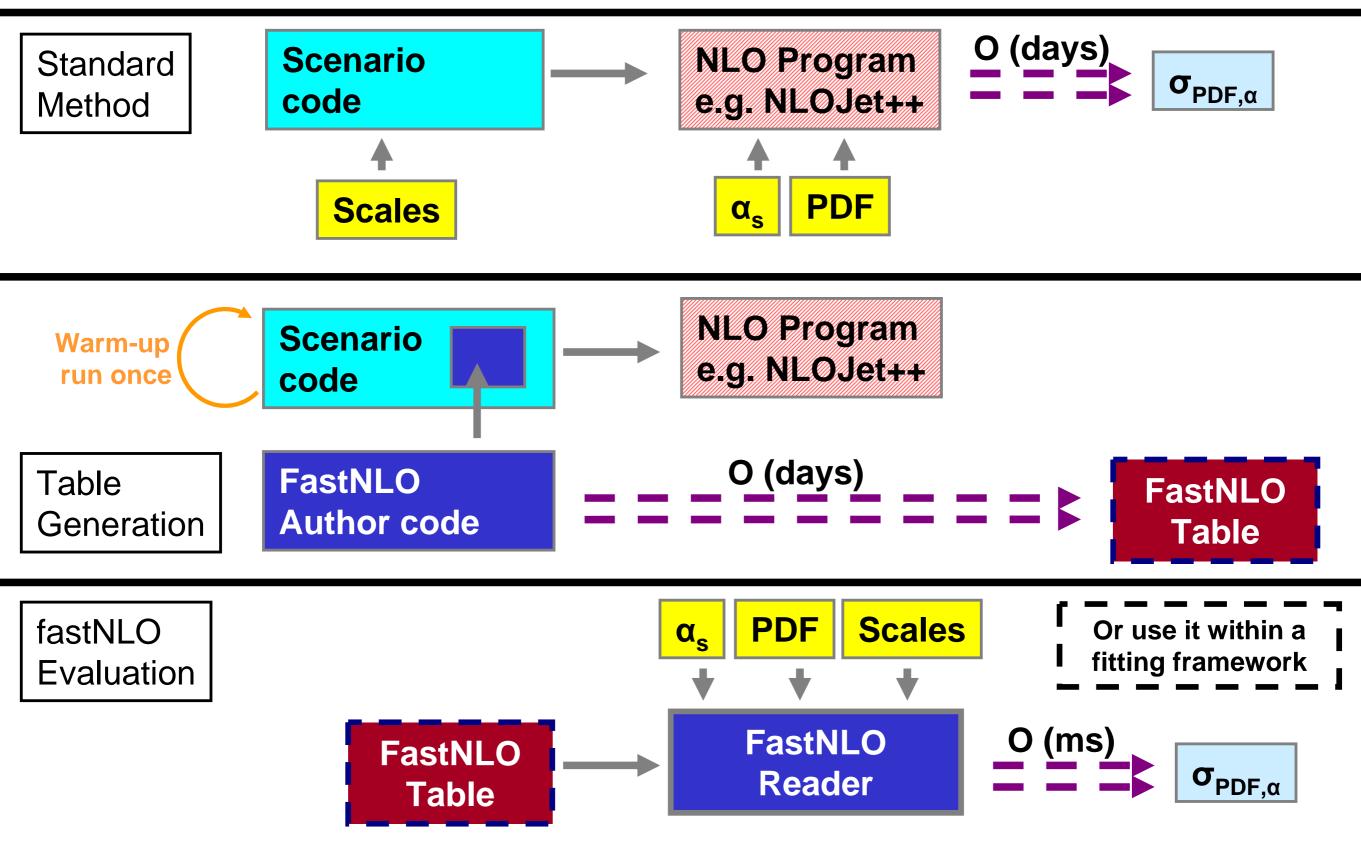

Application procedure

During the first computation no time is saved

Any further recalculation takes only O(ms)

Example: PDF-Error predictions à la PDF4LHC recommendation

Envelope of predictions of CT10, MSTW and NNPDF at CL68. Compared to CTEQ6.6 (CL90)


239 NLO repeated calculations

 $\mathsf{d}^2 \sigma / \mathsf{dp}_{\mathsf{T}} \mathsf{dy}_{\mathsf{T}} \mathsf{PDF} \ / \ \mathsf{d}^2 \sigma / \mathsf{dp}_{\mathsf{T}} \mathsf{dy}_{\mathsf{T}} \mathsf{CTEQ6.6}$

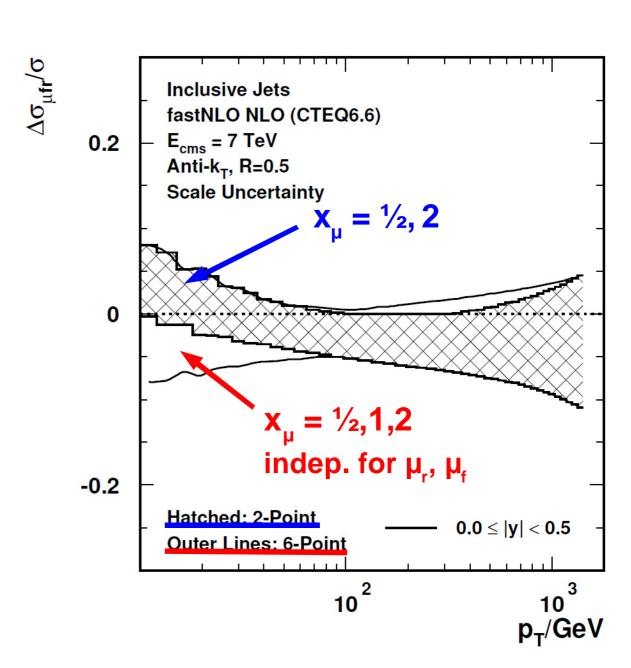
The fastNLO concept

Scales in FastNLO

FastNLO tables come with 3 (4) simultaneous scale variations tables

e.g. 0.5, 1.0, 2.0 times the nominal scale

A posteriori scale variation of the renormalizatoin scale allows study of asymetric scale variations


e.g. 6-points: (1/2,1/2), (1/2,1), (1,1/2), (1,2), (2,1), (2,2) avoiding of rel. 'factor' 4.

Improvements in v 2.0

scales get own dimension bicubic interpolation of scale-value to scale nodes typically 6 scale nodes examples already for

- CMS incl. jets
- D0 3-jet mass

- ...

Standard methods for higher-order pQCD calculations of cross sections in hadron-induced collisions are time-consuming. The fastNLO project uses multidimensional interpolation techniques to convert the convolutions of perturbative coefficients with parton distribution functions and the strong coupling into simple products. By integrating the perturbative coefficients for a given observable with interpolation kernels, fastNLO can store the results of the time-consuming calculation in tables which can subsequently be used for very fast calculations of the same observable for arbitrary PDFs, alpha_s, and different scales. These tables and corresponding user codes are currently available for a large number of jet measurements at the LHC, the Fermilab Tevatron, and HERA. fastNLO is currently used in publications of experimental results by the ATLAS, CMS, CDF, D0, and H1 collaborations, and in all recent global PDF analyses by MSTW, CTEQ, and NNPDF. This talk will focus on new developments, implemented in the new version 2 of fastNLO, which enhance and broaden the functionality.

The fastNLO concept

Jet cross sections are very slow to calculate

-> Need of method for very fast repeated calculation of cross sections

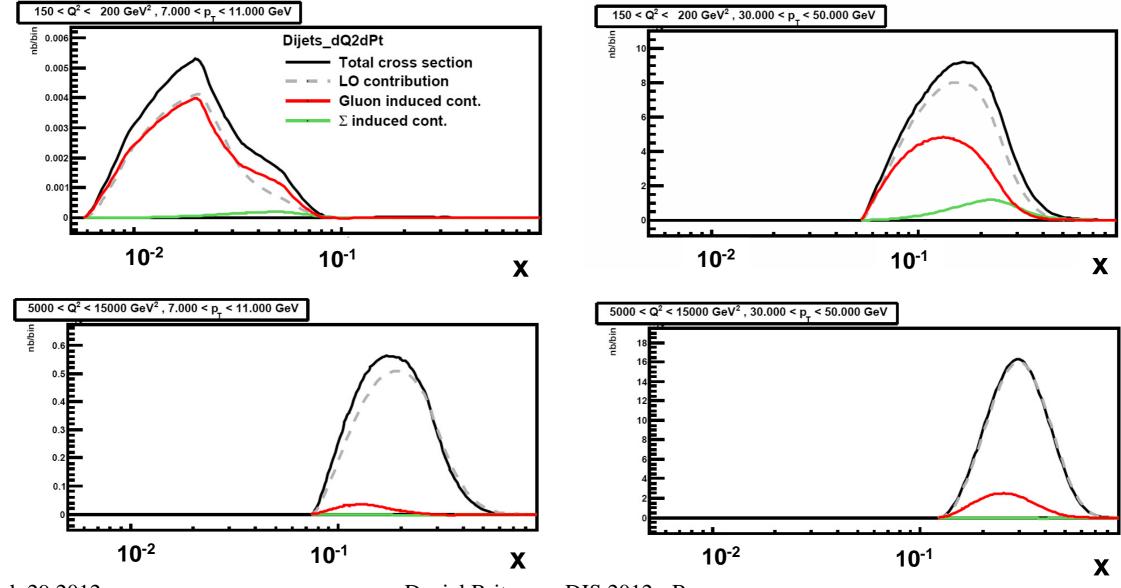
$$\sigma = \sum_{a,n} \int_{0}^{1} dx \alpha_{s}^{n}(\mu_{r}) \cdot c_{a,n}(\frac{x_{Bj}}{x}, \mu_{r}, \mu_{f}) \cdot f_{a}(x_{2}, \mu_{f}) \cdot c_{a,n}(\frac{x_{Bj}}{x}, \mu_{f}, \mu_{f}) \cdot f_{a}(x_{2}, \mu_{f}) \cdot c_{a,n}(\frac{x_{Bj}}{x}, \mu_{f}, \mu_{f}) \cdot f_{a}(x_{2}, \mu_{f}) \cdot c_{a,n}(\frac{x_{Bj}}{x}, \mu_{f}, \mu_{f}, \mu_{f}, \mu_{f}) \cdot c_{a,n}(\frac{x_{Bj}}{x}, \mu_{f}, \mu_{f}, \mu_{f}, \mu_{f}) \cdot c_{a,n}(\frac{x_{Bj}}{x}, \mu_{f}, \mu_{f}, \mu_{f}, \mu_{f}, \mu_{f}) \cdot c_{a,n}(\frac{x_{Bj}}{x}, \mu_{f}, \mu$$

FastNLO factorizes the cross section calculation for an a-posteriori inclusion of pdf's and alpha_s for e.g. jet-production

Introduce set of n discrete $x_{(i)}$'s with $x_n < ... < x_i < ... < x_0 = 1$ Around each $x_{(i)}$ define eigen function $E^{(i)}(x)$ with: $E^{(i)}(x_i) = 1$, $E^{(i)}(x_j) = 0$ ($i \ne j$), Σ_i $E^{(i)}(x) = 1$ for all x single pdf is replaced by a linear combination of eigenfunctions integrals are replaced by sums

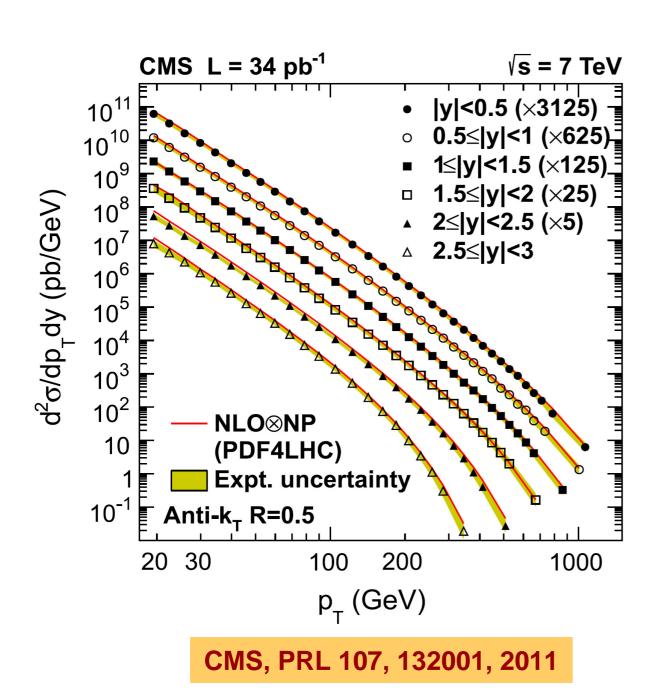
Better: Usage of bi-cubic interpolation and pdf reweighting

hadron-hadron -> everything just more complicated, but same concept


Which x-region do we test with jetastnico data?

E.g. H1 dijets @ high Q² four bins:

- low and high Q²
- low and high <pt>


Only three contributions in DIS Gluon, Delta, Sigma induced processes

Iow Q² is mostly gluon induced High Q² is mostly Delta induced 'low' x-region only at low <pt> and low Q²

Can we do the same for CMS inglastico jets?

CMS inclusive jets 176 bins 6 rapidity regions

To which 'x'-regions and to which pdfs are we sensitive to???